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Abstract

Background: An earlier oscillator model for the generation of spontaneous otoacoustic emissions (SOAEs) from the lizard ear is extended 
with a connection of the oscillators to the basilar papilla, to make it possible that these SOAEs can be transported to the tympanic membrane, 
to be emitted.

Material and methods: The generators of spontaneous otoacoustic emissions are modelled as a one-dimensional array of Hopf-resonators. 
The resonators (or oscillators) are coupled to their neighbours, and to the basilar papilla. The papilla is modelled as a rigid structure, that is 
flexibly connected to its surroundings.

Results: Frequency spectra are given for different sets of coupling parameters, both for nearest neighbour coupling of the oscillators, and for 
coupling to the papilla, and also after the introduction of irregularities in the damping of the oscillators. Waterfall and density plots show 
clustering of the oscillators in frequency plateaus, and entrainment of a cluster of oscillators by an externally applied sinusoidal force. All these 
model outcomes correspond with characteristics of SOAEs emitted by real lizard ears.

Conclusions: The present model is a useful extension of an earlier model. Because its characteristics differ from that of a model that is used 
to describe the generation of SOAEs by mammalian ears, it revives the discussion whether different models are needed for SOAE generation 
in different animal species
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OD PĘCZKA KOMÓREK SŁUCHOWYCH DO BŁONY BĘBENKOWEJ: ROZSZERZONY 
MODEL GENERACJI SPONTANICZNYCH EMISJI OTOAKUSTYCZNYCH W UCHU 
JASZCZUREK

Streszczenie

Wprowadzenie: Wcześniejszy model oscylatora generacji spontanicznych emisji otoakustycznych (SOAE) w uchu jaszczurki został rozszerzony 
o połączenie z oscylatorami brodawki podstawnej celem umożliwienia przeniesienia tych SOAE na błonę bębenkową, gdzie są emitowane.
Materiał i metody: Generatory spontanicznych otoemisji akustycznych są modelowane jako jednowymiarowy zestaw rezonatorów Hopfa, 
które są sparowane ze swoimi sąsiadami i z brodawką podstawną. Brodawka podstawna jest modelowana jako struktura sztywna elastycznie 
połączona ze swoim otoczeniem.

Wyniki: Zakresom częstotliwości przypisano różne zestawy parametrów sprzężenia: dla najbliższego sprzężenia oscylatorów, dla sprzężenia 
z błoną podstawną oraz po wprowadzeniu nieregularności w tłumieniu oscylatorów. Wykresy kaskadowe i gęstości pokazują zarówno skupiska 
oscylatorów w płaskiej części wykresu częstotliwości, jak i wciąganie skupisk oscylatorów przez siłę sinusoidalną podawaną z zewnątrz. 
Wszystkie te wyniki modelu są zgodne z charakterystykami SOAE emitowanych przez prawdziwe ucho jaszczurki.

Wnioski: Obecny model jest użytecznym rozszerzeniem wcześniejszego. Fakt, że jego charakterystyka jest odmienna niż modelu stosowanego 
do opisu wytwarzania SOAE przez uszy ssaków, ponownie pociąga za sobą dyskusję, czy dla różnych gatunków zwierząt potrzebne są różne 
modele generacji SOAE.

Słowa kluczowe: ucho wewnętrzne • oscylatory sparowane • brodawka podstawna • fala wędrująca • samopodtrzymujący • stabilizacja częstotliwości

Introduction

Otoacoustic emissions are faint sounds emitted by the 
ear, either spontaneously or in response to an incoming 
sound stimulus. They were first discovered more than 40 

years ago by Kemp [1,2], confirming startling predictions 
made much earlier by Gold [3]. Among the several classes 
of otoacoustic emissions (OAEs), click-evoked and distor-
tion product OAEs have become an integral part of clin-
ical tests of human hearing [4].
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A special class of OAEs are spontaneous otoacoustic emis-
sions (SOAEs), which are tone-like sounds emitted by an 
ear in the absence of any acoustic stimulation. The result-
ing spectrum of these sounds shows one or several distinc-
tive peaks, suggesting that perhaps the ear contains a set of 
fixed resonant elements, almost like a set of piano strings. 
Although SOAEs are not used in clinical practice, they are 
extensively investigated because they evidently reflect some 
internally active (amplification) process that improves the 
ear’s sensitivity and selectivity. Gold [3] suggested com-
paring the ear, being filled with fluid, with an underwater 
piano in which the vibration of the strings is amplified to 
compensate for the heavy damping of the surrounding flu-
id [5]. Overcompensation would then result in the emis-
sion of pure tones, just like SOAEs might be produced.

However, despite intensive research into their behaviour, 
the mechanism behind SOAEs has proved elusive, and 
there is still controversy in the field. In attempting to re-
solve the issue, there has been a longstanding interest in 
the hearing of lizards and other reptiles [6,7] because their 
ears are simpler than those of mammals. At the same time, 
both classes of animal share a number of features, most 
notably the generation of SOAEs, and the general hope is 
that understanding the lizard ear will prove helpful in un-
derstanding human hearing.

One of the ways to gain insight into this generation pro-
cess is to make a physically realistic model of the lizard 
ear and perform numerical computations that allow its 
behaviour – especially its acoustic spectrum – to be com-
pared with experimentally obtained data. This is the ap-
proach taken in the present paper.

In the lizard ear model by Vilfan & Duke [8] and by 
Gelfand et al. [9], a spontaneous otoacoustic emission 
(SOAE) signal is regarded as the sum of the displace-
ments (as a function of time) of coupled oscillators in 
a one-dimensional array. Individual peaks in an SOAE 
spectrum might therefore reflect the combined displace-
ments of neighbouring oscillators clustered into frequency 

plateaus [10]. This same model was used by Wit and col-
leagues [11,12] to explain several characteristics of differ-
ent types of otoacoustic emissions from lizard ears.

Not incorporated in the model, however, is how the sum 
of individual oscillations is transmitted to the tympan-
ic membrane. It therefore overlooks the possibility that 
this transmission process might in some way change the 
emitted signal. A model of the lizard ear by Bergevin & 
Shera [13] does include coupling to the middle ear, and 
thereby to the external acoustic environment, but it de-
scribes only stimulus frequency otoacoustic emissions 
(SFOAEs). In their model, hair bundles are represented 
by damped harmonic oscillators, but since the oscillators 
are passive, the model cannot describe the generation and 
emission of spontaneous otoacoustic emissions. (For de-
tailed arguments, see the thorough overview of OAE mod-
elling by Bergevin et al. [14]).

The present work seeks to overcome this limitation by rep-
resenting each of the hair bundles as an active mechani-
cal system that can generate self-sustained oscillations at a 
characteristic frequency [15]. It uses the formalism applied 
earlier by Vilfan & Duke [8], where the parameters can be 
varied so as to change both the properties of the oscilla-
tors and the way they are coupled. This model was used in 
the earlier work of Wit et al. [12]. Here, the model is elab-
orated to include the middle ear so that spontaneous ac-
tivity of the hair bundles can be conveyed to the eardrum.

The model

Figure 1 is a schematic drawing of the lizard ear. It is based 
on the following figures: Fig. 1 of [13], Fig. 3A of [16], Fig. 
1 of [17], Plate 1 in [18], Fig. 1 in [19], and Fig. 3 in [20]. 
The basilar papilla in Figure 1 moves as a rigid element 
[21,22]. It is connected to the surrounding structure by 
elastic elements (Fig. 6 of [19]). The vibrating elements 
(hair cells) set the basilar papilla into motion. This mo-
tion is transported to the stapes through the incompress-
ible fluid and leaves the ear as an otoacoustic emission.

Figure 1. (A) Model of the inner ear of the lizard. A, fluid inside a bony cavity; B, stapes; C, round window; D, basilar papilla; E, vibrat-
ing elements (oscillators). (B) Detail of A, for the situation where the neighbouring oscillators are reactively and dissipatively coupled
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Figure 1 is the simplest schematic representation of the 
positions of, and the connections between, the vibrating 
elements in the lizard inner ear. It is essentially the same 
as Fig. 4 of [23] or Fig. 1 of [13]. The hair cells in Figure 1 
are represented by a chain of j = 2,3, … n coupled oscil-
lators [1], in which xj and x.j are, respectively, displace-
ment and velocity (as a function of time) of the jth oscil-
lator. If xj and x.j are combined in the complex notation 
 𝑧𝑧� = 𝑥𝑥� − 1

𝜔𝜔�
𝑖𝑖𝑥𝑥�

·
 , the differential equation to be solved for the 

jth oscillator (j = 2,3,…,n) is:

𝑧𝑧�
· = (𝑖𝑖𝑖𝑖� + 𝜖𝜖�)𝑧𝑧� + (𝑑𝑑� + 𝑖𝑖𝑑𝑑�)(𝑧𝑧��� − 2𝑧𝑧� + 𝑧𝑧���) − 𝑏𝑏𝑏𝑧𝑧�𝑏�𝑧𝑧�  (1)

In Equation (1), ωj is the natural frequency of oscillator j 
(the frequency with which it will oscillate if it is not cou-
pled to its neighbours); εj is a measure of the effective 
damping, being positive for an active oscillator and neg-
ative for a passive (damped) oscillator; dR and dI are dis-
sipative and reactive coupling constants respectively; and 
bj controls the oscillation amplitude. For the first oscil-
lator of the chain of vibrating elements (j = 2) the term 
(zj–1 – 2zj + 2zj+1) is replaced by (z3 – z2) and for the last 
by (zn–1 – zn). Without coupling (dR = dI = 0), each oscilla-
tor obeys the generic equation for a Hopf bifurcation [24]:

𝑧𝑧�
· = (𝑖𝑖𝑖𝑖� + 𝜖𝜖�)𝑧𝑧� − 𝑏𝑏𝑏𝑧𝑧�𝑏�𝑧𝑧� .

Because the fluid is incompressible, the elements A, B, C, 
and D in Figure 1 move together at one frequency, and 
hence they are simply represented by only one damped os-
cillator. The displacement as a function of time, Re[z1(t)] 
of this oscillator is then the otoacoustic emission (OAE) 
measured at the eardrum. The equation for this oscilla-
tor is:

𝑧𝑧�
· = (𝑖𝑖𝑖𝑖� + 𝜖𝜖�)𝑧𝑧� − 𝑏𝑏𝑏𝑧𝑧�𝑏�𝑧𝑧� + 𝜇𝜇𝜇���� 𝑅𝑅𝑅𝑅𝑅𝑧𝑧�] . (2)

The last term in Equation (2) stands for the total force ex-
erted on the papilla by the vibrating elements. This force 

is supposed to be proportional to the sum of the displace-
ments xj(t) of the vibrating elements, with proportional-
ity constant µ. Furthermore, the term + µRe[z1] is added 
to the right-hand side of Equation (1), being the force ex-
erted by the papilla on each vibrating element. The values 
for ω1 and ε1 were chosen to give the oscillator the nat-
ural frequency and the damping of the middle ear of the 
lizard, to approximate Fig. 2.5A in [25].

The set of differential equations, as given in Equations 
(1) and (2), was solved with Mathematica 12 procedure 
NDSolve.

Results

In the following we investigate different arrangements of 
mechanical coupling between the ear’s vibrating elements 
(as depicted in Figure 1). The coupling is considered to be 
between nearest neighbours only, and to be a combination 
of masses, elasticities, and damping, covering all theoret-
ical possibilities. In addition, at some points we consid-
er the oscillators to be passive, and at other times active 
(that is, they have an inbuilt energy source that makes the 
elements oscillate continuously). For the situation where 
the oscillators are considered active, special attention is 
then focused on the vibration pattern of oscillator 1 (the 
underlying papilla on which all the elements sit), because 
this represents the SOAE emitted by the model.

Passive oscillators, with and without nearest neigh-
bour coupling, sine wave stimulus

All vibrating elements that represent hair cells were giv-
en the same negative value for εj, and the equations were 
solved for the situation in Figure 1 that the vibrating el-
ements were coupled to the papilla only, and not to their 
neighbours. Oscillator 1 was driven by a continuous sine 
wave by adding the term asin[ωextt] to the righthand side 
of Equation (2). The parameters had the following values: 

Figure 2. Amplitude and phase of the sinusoidal oscillation xj(t) of oscillators 2–201, if oscillator 1 is driven with a 3 kHz continuous sine 
wave with different amplitudes a. (A) Amplitude, for a = 1. (B) Phase with respect to that of oscillator 1, also for a = 1. (C) Amplitude for 
a increasing from 1 (0 dB) to 70 dB in 10 dB steps. (All curves are normalised to have maximum amplitude 1). The dashed lines in all 
panels mark oscillator 138, with a natural frequency of 3 kHz
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n = 201, ω1 = 2 × 2π, ε1 = –4, εj = –0.5, b = 1, dR = 0, dI = 0, 
µ = 0.2, ωext = 3 × 2π (being the natural frequency of oscilla-
tor 138). The natural frequencies of the oscillating elements 
increased exponentially from ω2 = 1 × 2π to ωn = 5 × 2π. 
Total calculation time and time-step were 70 ms and 0.01 
ms respectively. To obtain Figure 2, amplitude and phase 
were calculated for the last 50 ms of the real part of zj[t], 
to eliminate onset effects.

Figure 3A is a density plot for displacement as a function 
of time for oscillators 98 to 162, for the same set of pa-
rameters as for the calculation of Figures 2A and 2B. To 
obtain Figure 3B, strong nearest neighbour coupling was 
introduced by changing the value of the reactive coupling 
constant dI from 0 to −8. The other parameters remained 
the same as for Figure 3A. This nearest neighbour coupling 
has two effects, as can be seen by comparing Figures 3A 
and 3B. First, it shifts the resonance peak – as shown in 
Figure 2A – to lower oscillator numbers and broadens it. 

Figure 3. Density plots for the sinusoidal oscillation xj(t) for oscillators 98–162, if oscillator 1 is driven with a 3 kHz continuous sine 
wave. (A) For the same set of parameters as for Figure 2 (no nearest neighbour coupling). (B) For nearest neighbour reactive coupling 
constant dI = –8, instead of 0
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And second, it creates clusters of oscillators, whose phase 
changes steadily along the array, with sudden phase jumps 
between successive clusters.

The plots in Figure 4 show, in comparison with Figure 2, 
shifting and broadening of the resonance peak, as well as 
phase glides and jumps, caused by nearest neighbour cou-
pling between the oscillators.

Active oscillators coupled to the papilla only

To couple the oscillators to the basilar papilla only (with-
out nearest neighbour coupling), µ was given the value 
3.4, with dR = dI = 0 (this was the highest value of µ for 
which the model remained stable). The values for ε1 and b 
were 0.8. As can be seen in Figure 5, this produced highly 

distorted signals for all oscillators, with a fundamental fre-
quency of 0.55 kHz and many odd harmonics.

Calculations were repeated for different values of µ, again 
for coupling to oscillator 1 only. Spectra are shown in 
Figure 6. The irregularities in the spectra for the two low-
er µ-values are caused by irregularities in the envelope of 
the signal x1(t) – that is, there are irregular fluctuations 
in its amplitude. For µ < 0.9 the oscillators do not cluster.

Active oscillators coupled to the papilla, with near-
est neighbour coupling

Amplitude spectra were calculated for the situation with 
nearest neighbour coupling (dR = 0.1, dI = 1.1), while all os-
cillators (vibrating elements in Figure 1) were coupled to 

Figure 5. (A) Displacement as a function of time for oscillators 1, 50, 100, 150, and 200 when oscillator 1 was coupled to all of them 
with µ = 3.4 (and no nearest neighbour coupling). Dashed lines are at displacement zero. (B) Amplitude spectrum with linear axes for 
oscillators 1, 5, 11,…, 201. (C) Amplitude spectrum for oscillator 1 with equidistant peaks
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the papilla (oscillator 1; µ = 0.4). The values for εj (2, …, 201) 
and for b remained at 0.8. Results are shown in Figure 7, 
for two values of the natural frequency of oscillator 1.

The two-dimensional array of xj(t) values (1, 2,..., m) was 
filtered with a fourth-order Butterworth filter with centre 
frequency 2.13 kHz and full width 200 Hz. This centre 
frequency (arrows in Figure 7) is the frequency at which 
a subset of the oscillators cluster. The filtered array was 
transposed, producing an array of displacement profiles 
along the oscillator array at successive times (time-step 
0.01 ms). These profiles were smoothed using interpolat-
ing functions and then plotted in Figure 8.

Oscillators coupled to the papilla with nearest 
neighbour coupling, and an irregular array of εj 
values

For each ear of a lizard with SOAEs, the spectrum of the 
emitted sound is unique [26,27] and in general different 
from the regular spectra as shown in Figure 7. To account 
for this uniqueness in human ears, Fruth et al. [28] intro-
duced, in their one-dimensional active oscillator model for 
the human cochlea, a different bifurcation parameter pro-
file ε(x) for each individual ear. This profile is generated by 
a spatial version of the stochastic Ornstein-Uhlenbeck pro-
cess, producing correlation in ε(x) over a finite correlation 
length, where x is the distance from the stapes along the 

Figure 7. Amplitude spectra of oscillators for two values of basilar papilla tuning (2 and 4 kHz, left and right panels). (A) Amplitude 
spectrum for the sum of the displacements as a function of time for oscillators 2,…, 201. (B) Spectrum for the displacement as a function 
of time for oscillator 1. The arrows indicate the centre frequency of the filter that was employed to obtain Figure 8
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basilar membrane. According to Fruth et al. [28], corre-
lation of irregularities along the cochlear partition could 
be a result of irregularities in the developmental process.

Following Fruth et al. [28], calculations were repeat-
ed for the same set of parameters as used to obtain 
Figures 7 and 8 above, but now for the εj-profile shown 
in Figure 9A, instead of for a constant value of εj. This 
profile was calculated with Mathematica command Ran

domFunction[OrnsteinUlhenbeckProcess]. Spectra given 
in Figures 9B and 9C should be compared with those in 
Figure 7. The moving displacement profile in Figure 9D 
was calculated in the same way as Figure 8, applying a 
bandpass Butterworth filter.

Figure 10A shows the amplitude spectra for oscillators 2, 
4,… 200 in a waterfall plot. And Figure 10B is a density 
plot for the (normalised) displacements xj(t) of oscillators 

Figure 9. Response of a coupled set of oscillators with irregular εj(t) values. (A) Values of εj for j = 2,… 201. (B) Amplitude spectrum for 
the sum of the displacements as a function of time for oscillators 2,…201. The black arrow indicates the central frequency of the filter 
that was employed to obtain figure D. (C) Amplitude spectrum for the displacement as a function of time for oscillator 1, for a natural 
frequency of 2 kHz for this oscillator. (D) Waterfall plot for two cycles of the displacement pattern of those oscillators which are clustered 
at a frequency of 2.12 kHz. The pattern travels in the direction of the low frequency end of the array, as indicated with the red arrow
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2–200 during 2 ms. The white arrow marks the range of os-
cillators that cluster at a frequency of 2.12 kHz, producing 
the spectral peak marked with a black arrow in Figure 9B.

Entrainment by an external tone

Amplitude spectra were again calculated for the same set 
of parameters as for the preceding subsection, and results 
are shown in Figure 11A (which is a detail of Figure 9C). 
These calculations were repeated after the introduction 
of a continuous sinusoidal force driving oscillator 1. This 
force was given a frequency of 1.85 kHz, being slight-
ly higher than that of the 1.8 kHz cluster of oscillators in 
Figure 11B. Its strength was just enough to fully entrain 
the cluster, as can be seen by the 1.85 kHz peak and clus-
ter in Figures 11C and 11D.

Discussion

The numerical modelling undertaken here has been gener-
ally guided by experience from previous work on the dy-
namical properties of arrays of active oscillators. This ex-
perience has informed the choice of parameters, although 
it must be acknowledged that the parameter space has not 
been thoroughly explored. Nevertheless, some interest-
ing properties have emerged from the present work, and 
the relevance to the lizard ear is discussed in more detail 
below, following the arrangement of the Results section.

Passive oscillators

We have seen that the sharpness of tuning, shown in 
Figure 2C, decreases for increasing amplitude a of the con-
stant frequency sinusoidal force that stimulates oscillator 1. 
This is because the equation governing the behaviour of the 
oscillating elements 2–201 is that for a Hopf resonator, and 
for such a resonator the sharpness of tuning decreases for 
larger amplitudes of the sinusoidal driving force (see, for 
instance, Fig. 2 in [17] or Fig. 1b of [8]). This leads to the 
consequence that the tuning of an array of equal oscillators 
with a Hopf bifurcation, only differing in natural frequen-
cy, is sharper for a lower level of the stimulating constant 
frequency sinusoidal force, as can be seen in Figure 2C.

Another consequence of a Hopf-style nonlinearity has been 
documented for the mammalian ear by Ruggero (Fig. 1 in 
[29]): tuning curves, measured at one location of the basi-
lar membrane of the chinchilla, are broader for a stronger 
stimulating force. The same property is seen in hair bun-
dles of the bullfrog sacculus [30,31].

Support for the presence of a similar nonlinearity in the 
lizard ear comes from Holton & Weiss [32]. These au-
thors measured receptor potential iso-voltage contours, 
from the same hair cell in the intact alligator lizard coch-
lea (their Fig. 2), for both the DC-component and for the 
fundamental AC-component. The narrow tip of the AC 

Figure 11. The oscillator system driven by an external tone of 1.85 kHz, with results plotted from 1.2 to 2.2 kHz. (A) Detail of the ampli-
tude spectrum for oscillator 1, for the same set of parameters as for Figure 9. (B) Amplitude spectra for a subset of the individual oscil-
lators, again for the same set of parameters as for Figure 9. (C) As for A, but now with a 1.85 kHz continuous force driving oscillator 1. 
(D) As for B, but with the force now present. The vertical gridlines are in the same positions in all panels
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iso-voltage contour could be recorded at sound pressure 
levels 20 dB lower than for the broader tip of the DC iso-
voltage contour. In other words, tuning is sharper for low-
er stimulus levels.

The physical arrangement of the lizard ear, given in 
Figure 1, resembles that of the familiar vibrating reed fre-
quency meter (VRFM). The only difference is that in the 
lizard ear the basilar papilla is attached to the surround-
ing cartilage-like ring by a flexible structure, while in the 
VRFM the individual oscillators (the “reeds”) are attached 
to a solid bar. The VRFM was used by Wilson [33,34] to 
investigate the properties of the travelling wave. It was also 
used by von Békésy (Chapter 12 in [35]), to understand 
how a travelling wave arises on the mammalian basilar 
membrane. To couple the reeds Wilson intertwined a rub-
ber thread between them. His findings and other proper-
ties of the VRFM are extensively treated in Bell & Wit [36].

In both the VRFM and the present model, the vibrating 
elements are coupled to a solid structure. So it is not sur-
prising that the results for the situation where the oscilla-
tors in the present model are passive are identical to those 
for the “reeds” in [36]. In fact, Figures 3 and 4 above are 
essentially the same as the respective Fig. 4 and 10c in [36].

The magnitude and spacing of the ripples, as seen in 
Figure 4, depend on the coupling strength. Stronger cou-
pling increases both their magnitude and spacing, as can 
be seen in Fig. 10 of [36].

Active oscillators coupled to the papilla only

In this situation (see Figure 5) the waveforms of the dis-
placements µ of all oscillators are highly distorted, giv-
ing spectra for all oscillators with the same fundamen-
tal frequency and the same harmonics. The fundamental 
frequency, and thus the interval between harmonics, is 
smaller for stronger coupling to the papillla (Figure 6). 
Considering the characteristics of SOAEs emitted by a real 
lizard ear (e.g. [26]), these results suggest that it is very 
unlikely that lizard SOAEs are created by oscillating ele-
ments that are coupled only to the papilla.

Active oscillators coupled to the papilla, with near-
est neighbour coupling

The spectra in Figure 7 have a regular pattern, although 
the spectral peaks are not perfectly equidistant. The peaks 
occur at 1.48, 2.13, 2.83, 3.54, 4.26, and 5.00 kHz (with sep-
arations of 0.65, 0.71, 0.72, and 0.74 kHz). Peak height is 
affected by the natural frequency of oscillator 1, an effect 
which is largest in the spectra for oscillator 1 (the lower 
panels in Figure 7).

Changing the resonance frequency of the highly damped 
oscillator 1 from 2 kHz to 4 kHz affects the amplitudes 
of the spectral peaks in Figure 7, not only for oscillator 1 
but also for the sum of displacements. It does not, howev-
er, change the frequency of the peaks. It is already known 
that the position of the peaks and their separation depends 
on their reactive coupling (see Figs 5, 6, and 17 of [12]), 
with frequency shifts being proportional to the coupling 
strength parameter dI.

The peak in the lower figure (for oscillator 1) in the left 
panel of Figure 7, marked with the arrow, is 21 times 
(26 dB) weaker than that for the sum of signals (upper fig-
ure in the same panel). It is impossible to check if such a 
difference is realistic, because the power produced by in-
dividual self-sustaining oscillators in the lizard inner ear 
has never been measured.

If it is supposed that the oscillator array lies in a straight 
row on top of the papilla, their instantaneous displace-
ments give rise to a graded profile along the one-dimen-
sional array. The profile travels along the array and the 
process repeats itself for every period of oscillation of 
the individual oscillators in the same cluster, as shown in 
Figure 8A for the 2.13 kHz cluster. Other clusters behave 
in the same way (even for other parameter settings), as 
can be concluded from Figure 10.

Although difficult to see in Figure 8A, but apparent in 
Figure 8B, the displacement profile for a small number of 
oscillators changes from a travelling wave into a low-ampli-
tude standing wave at the transition to the 1.48 kHz cluster.

Irregular array of εj values

Whether the εj values of all oscillators are the same or ir-
regular, the outcomes are the same: the oscillators cluster 
in groups of common frequency. The difference is that the 
spectra (Figures 9B and 9C) are irregular, as are the SOAE 
spectra from real lizard ears [26,27]. In this context, Wit 
and colleagues showed (Fig. 10 in [12]) that different εj 
profiles give different spectra, in a similar way to how each 
individual lizard ear has its own unique SOAE spectrum.

As can be seen in Figure 9D, the displacement profile 
for the oscillators in a cluster travels towards the low fre-
quency end of the array, and this process repeats itself af-
ter each period of oscillation.

The dashed line in Figure 10A indicates that the oscilla-
tors within a single cluster oscillate at the frequency of the 
oscillator within that cluster that has the highest natural 
frequency. In explanation, Vilfan & Duke [8] showed that 
a reactively coupled oscillator can couple only to a neigh-
bouring oscillator that has a higher natural frequency, and 
never to one with a lower natural frequency.

Figure 10B illustrates how, within a cluster of oscillators, 
a fixed phase difference exists between adjacent oscilla-
tors. Moreover, this phase difference increases for oscil-
lators further away from the highest frequency oscillator 
in that cluster (as can also be seen in Fig. 2 in [11]). After 
onset, the oscillators need some time to reach the stable 
situation shown in Figure 10B. This is also well illustrat-
ed in Fig. 3a of [9]: clustering starts at the high frequency 
end of the array and propagates towards the low frequen-
cy end. The model by Gelfand et al. [9] consists of a one-
dimensional array of 110 Van der Pol oscillators, coupled 
to their nearest neighbours. These authors did not inves-
tigate the effect of coupling of the oscillators to the basi-
lar papilla.

Wit and Bell – SOAEs in lizards
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Entrainment by an external tone

If the papilla (oscillator 1) is driven by a continuous sinu-
soidal force, with a frequency not too far away from that of 
one of the clusters in the array, the oscillators in that cluster 
(and some in adjacent clusters) will be entrained by, and 
become phase-locked to, the external force (Figure 11). 
Entrainment by a sinusoidal force was demonstrated for 
spontaneous oscillations of hair bundles in the bullfrog 
sacculus [30]. For SOAEs it has been documented for hu-
mans [37] as well as for lizards [38].

Entrainment is a characteristic feature of oscillators [39]. 
In a model for the generation of human SOAEs, taken to 
be an array of coupled self-sustained oscillators, Wit & 
Van Dijk [40] showed entrainment of a subgroup of os-
cillators, clustered at one frequency, to an external sinu-
soidal force. If the forcing is not quite strong enough to 
cause permanent phase-locking – which can happen in 
the presence of noise – the oscillator will occasionally es-
cape from phase-lock. This “phase-slip” is a distinctive 
property of (human) SOAEs, as was shown by Van Dijk 
& Wit [41]. The same phenomenon can also be observed 
in in vitro preparations of hair bundles of selected audi-
tory and vestibular organs [42]. Phase-slip was modelled 
by Wit & Bell [43] for an array of oscillators clustered in 
frequency plateaus.

The phenomenon of phase-lock, and especially that of 
phase-slip, gives strong support for the notion that spon-
taneous otoacoustic emissions are generated by self-sus-
taining oscillators.

Concluding remarks

The model

It is generally accepted that hair cells (or their bundles) 
are the oscillators in a real ear. Recently, Faber & Bozovic 
[44] explored synchronisation of coupled hair cells in in 
vitro preparations of the bullfrog sacculus, to lend “support 
to the theory that SOAEs may be generated by frequency 

clustering of actively oscillating hair bundles”. This suppo-
sition, in combination with the results and their discussion 
presented in the preceding sections (and the results pre-
sented in the earlier paper of Wit et al. [12]), lead to the 
conclusion that the basic properties of SOAEs, measura-
ble at the lizard eardrum, can be well modelled by an array 
of active oscillators that are coupled to their neighbours 
and to the supporting papilla, as shown in Figure 1 [23].

A dichotomy?

In Shera’s wave-based “coherent reflection” model for the 
generation of SOAEs in the mammalian ear [45], a key 
role is played by standing waves created by multiple inter-
nal reflection of waves travelling backwards and forwards 
along the basilar membrane (Fig. 2 in [46,47]). In the pre-
sent model, SOAEs are oscillators – clustered in frequency 
plateaus – that drive the basilar papilla of the lizard. Apart 
from almost imperceptible regions of the oscillator array 
(see Figure 11B), no standing waves are present. The gen-
eral pattern is that of waves travelling along the array in the 
direction of lower natural frequencies (Figures 7A, 11A, and 
12D). This observation suggests that different models are 
needed to describe SOAE-generation in different classes of 
vertebrate ears. (For a review that, among other things, ad-
dresses this question, see [14]). Bergevin and colleagues [14] 
think that wave-based (coherent reflection) and coupled-
oscillator models “are not orthogonal notions”. However, 
Shera argues that these two frameworks “espouse radically 
opposing views of causality” [48]. Adding to the discussion, 
Siegel recently stated that “models of otoacoustic emissions 
appear to be largely in error and should be reevaluated. In 
particular, a new generation of models that explore the di-
rect coupling from the organ of Corti to the stapes foot-
plate through fluid pressure appear to be required” [49]. It 
seems we are nowhere near the last word on this subject.
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